Spectrum-splitting approach for Fermi-operator expansion in all-electron Kohn-Sham DFT calculations

نویسندگان

  • Phani Motamarri
  • Vikram Gavini
  • Michael Ortiz
چکیده

We present a spectrum-splitting approach to conduct all-electron Kohn-Sham density functional theory (DFT) calculations by employing Fermi-operator expansion of the Kohn-Sham Hamiltonian. The proposed approach splits the subspace containing the occupied eigenspace into a core-subspace, spanned by the core eigenfunctions, and its complement, the valence-subspace, and thereby enables an efficient computation of the Fermi-operator expansion by reducing the expansion to the valencesubspace projected Kohn-Sham Hamiltonian. The key ideas used in our approach are: (i) employ Chebyshev filtering to compute a subspace containing the occupied states followed by a localization procedure to generate non-orthogonal localized functions spanning the Chebyshev-filtered subspace; (ii) compute the Kohn-Sham Hamiltonian projected onto the valence-subspace; (iii) employ Fermioperator expansion in terms of the valence-subspace projected Hamiltonian to compute the density matrix, electron-density and band energy. We demonstrate the accuracy and performance of the method on benchmark materials systems involving silicon nano-clusters up to 1330 electrons, a single gold atom and a six-atom gold nano-cluster. The benchmark studies on silicon nano-clusters revealed a staggering five-fold reduction in the Fermi-operator expansion polynomial degree by using the spectrum-splitting approach for accuracies in the ground-state energies of ∼ 10Ha/atom with respect to reference calculations. Further, numerical investigations on gold suggest that spectrum splitting is indispensable to achieve meaningful accuracies, while employing Fermi-operator expansion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A subquadratic-scaling subspace projection method for large-scale Kohn-Sham density functional theory calculations using spectral finite-element discretization

We present a subspace projection technique to conduct large-scale Kohn-Sham density functional theory calculations using higher-order spectral finite-element discretization. The proposed method treats both metallic and insulating materials in a single framework, and is applicable to both pseudopotential as well as all-electron calculations. The key ideas involved in the development of this meth...

متن کامل

Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations

We develop a framework for orbital-free generalized gradient approximations (GGAs) for the noninteracting free energy density and its components (kinetic energy, entropy) based upon analysis of the corresponding gradient expansion. From that we obtain a new finite-temperature GGA (ftGGA) pair. We discuss implementation of the finite-temperature Thomas-Fermi, second-order gradient expansion, and...

متن کامل

Exact nonadditive kinetic potentials for embedded density functional theory.

We describe an embedded density functional theory (DFT) protocol in which the nonadditive kinetic energy component of the embedding potential is treated exactly. At each iteration of the Kohn-Sham equations for constrained electron density, the Zhao-Morrison-Parr constrained search method for constructing Kohn-Sham orbitals is combined with the King-Handy expression for the exact kinetic potent...

متن کامل

Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of KohnSham density-functional theory (DFT). To this end, we develop an a priori mesh adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy ...

متن کامل

Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016